Jawabanpaling sesuai dengan pertanyaan Diketahui kubus ABCD.EFGH dengan panjang rusuk 12" "cm. K adalah titik tengah ruas AB. Jar 12SMA Matematika GEOMETRI Diketahui balok ABCD EFGH dengan panjang AB = 15 cm, BC = 9 cm, dan CG = 12 cm. Jika titik M berada di ruas garis EH dengan EM : MH = 2 : 1 Dan titik N berada di ruas garis AD dengan AN : AD = 2 :, jarak garis AE ke bidang BFMN adalah Jarak Garis ke Bidang Dimensi Tiga GEOMETRI Matematika Rekomendasi video solusi lainnya 12SMA Matematika GEOMETRI Pada kubus ABCD.EFGH, panjang rusuk AB = 12 cm. M adalah titik potong diagonal AC dan BD. Tentukan jarak titik E ke garis GM. Jarak Titik ke Garis Dimensi Tiga GEOMETRI Matematika Rekomendasi video solusi lainnya 02:45 Diketahui kubus ABCD EFGH dengan panjang rusuk 8 cm. Jara 02:02 Fast Money. Pilihlah jawaban yang tepat dari pilihan jawaban yang diberikan! 1. Diketahui ruas garis DE 14 cm. Jika ruas garis tersebut dibagi menjadi 8 bagian, panjang tiap bagian adalah .... A. 0,85 cm B. 1,15 cm C. 1,45 cm D. 1,75 cm 2. Sintia membagi ruas garis AB menjadi 7 bagian seperti berikut Pasangan ruas garis yang sebanding dengan AR AB adalah .... A. AP PQ B. AQ AP C. PR BQ D. PR RB 3. Perhatikan gambar berikut Garis BC sejajar dengan garis DE. Panjang AC, AB, dan AD berturut-turut 10 cm, 8 cm, dan 6 cm, maka panjang AE adalah .... A. 7,5 cm B. 8,0 cm C. 8,5 cm D. 9,0 cm 4. Perhatikan gambar berikut! Nilai x adalah .... A. 8 cm B. 10 cm C. 12 cm D. 14 cm 5. Perbandingan PS SQ adalah 3 2. Jika panjang QR 15 cm, maka panjang ST adalah .... A. 6 cm B. 7 cm C. 8 cm D. 9 cm 6. Jalan Wisnu dan Jalan Krisna membentuk persimpangan seperti gambar berikut! Sepanjang jalan Wisnu akan dipasang 9 lampu jalan dengan jarak antar lampu sama panjang. Lampu pertama akan dipasang di titik persimpangan jalan Wisnu dan Krisna. Jarak lampu A dengan lampu pertama 40 m. Jika jarak pohon dengan lampu A seperti gambar 30 m, maka jarak antar lampu adalah .... A. 16 m B. 20 m C. 24 m D. 30 m 7. Diketahui titik E, F, dan G pada jajargenjang ABCD. Sisi FE sejajar dengan sisi AB. Jika AB = 14 dan EF = DF = 6, maka CG BG adalah .... A. 2 3 B. 3 4 C. 3 7 D. 5 6 8. Panjang dan lebar persegi panjang ABCD berturut-turut 24 cm dan 16 cm. Jika CF AF = 5 3, maka luas daerah yang diarsir adalah …. A. 134 cm2 B. 272 cm2 C. 368 cm2 D. 412 cm2 9. Perhatikan gambar berikut! Diketahui AD // BC // PQ. Jika perbandingan AQ CQ = DP BP = 2 5, maka panjang PQ adalah .... A. 12 cm B. 16 cm C. 20 cm D. 24 cm 10. Perhatikan gambar berikut! Diketahui persegi panjang ABCD berukuran 42 cm x 18 cm. Titik D berada di tengah garis PQ. Jika panjang AQ 1/6 panjang AB, maka panjang ruas RC adalah .... A. 16 cm B. 18 cm C. 21 cm D. 24 cm 3. Diketahui panjang ruas garis AB adalah 12 cm. Bagilah ruas garis AB tersebut menjadi 5 bagian sama panjangQuestionGauthmathier9781Grade 9 YES! We solved the question!Check the full answer on App GauthmathGauth Tutor SolutionMechanical engineerTutor for 2 yearsAnswerExplanationFeedback from studentsEasy to understand 99 Help me a lot 70 Excellent Handwriting 68 Write neatly 56 Detailed steps 43 Clear explanation 43 Correct answer 37 Does the answer help you? Rate for it!Gauthmath helper for ChromeCrop a question and search for answer. Its faster!Still have questions? Ask a live tutor for help live Q&A or pic step-by-step access to all gallery Tutor Now Jarak dua titik dalam pelajaran matematika dapat dihitung menggunakan rumus Phythagoras. Foto pembahasan geometri pada pelajaran matematika, perhitungan jarak dua titik tentunya sudah tidak asing dua titik adalah perhitungan yang digunakan untuk mengukur jarak dari suatu titik ke titik lainnya. Perhitungan ini dapat dilakukan dalam mengukur jarak titik pada garis dan suatu jarak antara dua titik dapat dilakukan menggunakan teorema Phythagoras. Untuk memahami teorema Phythagoras dan penggunaannya untuk menghitung jarak dua titik, simak penjelasan di bawah PhythagorasDikutip dari buku Matematika Belajar Ringkas Matematika yang ditulis oleh Ayubkasi Soromi, dkk teorema Phythagoras adalah suatu aturan matematika yang dapat digunakan untuk menentukan panjang salah satu sisi dari sebuah segitiga dari teorema ini diambil dari penemunya, yaitu Phythagoras. Phythagoras adalah seorang ahli matematika dan filsuf yang menyatakan bahwa kuadrat panjang sisi miring pada bangun segitiga siku-siku sama dengan jumlah kuadrat panjang sisi-sisi buku Metode Hafalan Di Luar Kepala Rumus Matematika SMP Kelas 7 oleh Andrian Duratun Kausar dan Andriana Lestari, ‎ rumus teorema Phythagoras adalaha sisi a pada segitiga siku-sikub sisi b pada segitiga siku-sikuc hipotenusa sisi miring segitiga siku-sikuJarak Dua TitikMengutip dari buku Matematika yang disusun oleh Betris Hs Nggole, konsep dari jarak dua antara dua titik dapat dipahami melalui gambar dan penjelasan berikut dua titik adalah panjang garis yang menghubungkan kedua titik tersebut. Foto Buku Matematika karya Betris NggolePada gambar tersebut, terdapat dua titik. Dua titik tersebut adalah titik A dan Titik B. Kedua titik tersebut membentuk garis garis g terdapat ruas garis AB. Jarak antara titik A dan titik B ditunjukkan oleh panjang ruas garis AB. Berdasarkan penjelasan tersebut, dapat disimpulkan bahwa jarak antara dua titik adalah panjang ruas garis yang menghubungkan kedua titik Menghitung Jarak Dua Titik dengan Rumus PhythagorasSeperti yang disebutkan sebelumnya, jarak dua titik dapat dihitung menggunakan teorema Pythagoras bila terkait dengan segitiga memahami cara menghitung jarak antara dua titik dengan rumus Phythagoras, simak contoh soal berikut kubus ABCD. EFGH. Foto Buku Matematika karya Betris NggoleDiketahui kubus dengan panjang rusuk 12 cm. Tentukan jarak titik A ke titik kubus garis titik A ke titik C dapat membentuk segitiga. Diketahui bahwa panjang AB 12 cm, sehingga panjang BC adalah 12 mencari panjang garis AC menggunakan rumus PhythagorasMaka panjang garis AC atau jarak antara titik A dan C adalah 12√2 isi teorema Phythagoras?Siapa yang menciptakan teorema Phythagoras?Sebutkan rumus teorema Phythagoras?

diketahui panjang ruas garis ab adalah 12 cm